Description

Seeing the continuous increase in natural disasters around the world, many people are contemplating how to contribute helping those in need. Among them are several computer scientists who fulfil their share by developing technology which enables fast and reliable communication in disaster areas. We were inspired by their work and thus wanted to further improve the state-of-the-art. DTN is a specific technology which can be used for the creation of alternative networks in disaster areas, where conventional ones are unavailable due to the inevitable destructions implied by the disaster. Given that such technology is usually evaluated within network simulators we exclusively focus on improving the state-of-the-art of movement models and scenarios utilized within such simulators. The very random driven, and thus not realistic, state-of-the-art is improved by our contribution in the form of a fully designed, implemented, and evaluated realistic natural disaster movement model with underlying scenarios. The results of our evaluation indicate that previously published results might be too optimistic. Thus, further approximations to reality are inevitable for more accurate simulation of DTN, in the goal to ultimately obtain better and more realistic results.